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1. Introduction

This paper describes the re-creation of the game Warzone using the Unity Engine and the
addition of several intelligent agents that can play against one another. In order to properly
explain the complexities of the state space and the job of the agents, it is necessary to describe
the game itself.

Warzone is an online Risk-like game that pits players and bots against one another in a
geographical takeover of a given map. The primary outline of the game is simple. Each player or
agent begins with 5 armies. Every round, they can deploy the number of armies they have in any
permutation to the territories they control, and then they can make a series of attack moves to
gain additional territories. If you send more armies into territory then it has to defend, it falls and
becomes your territory. There exist larger functions of the map called regions, which are
composed of multiple territories, and by controlling one, you gain additional armies that you can
deploy each round. The game at this point becomes a race to control regions and to attack
opponents. An agent wins the game if all other plays have been defeated.

With the basic premise of the game
explained, I went about recreating this game
using Unity (to a minimal extent) with
solely agents playing against one another,
without player interaction. The question I
had in mind when designing this project was
to assess whether I could create intelligent
agents to play this game and if they would
exhibit any of the human-like strategies I
employ myself.

The premise and intrigue of this game in
terms of A.I. is simple: there exists a
massive and complex state space wherein

agents battle one another and each previous move they make drastically affects their future
outcome. It is much like Go or Chess from an agent perspective, except that the state space is
technically only limited by the size of the map, and there can be any number of players. In
addition, there exist many possible strategies for the agents to employ, including regional
prioritization, enemy disruption, and frontline fortification.
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The primary challenges I came across when creating the game and agents are numerous and will
be described in more detail in the approach section of this paper. As one might suspect, the
largest issue came in the form of designing the GameState and how agents would interact with
this GameState. In addition, the size of the state space is enormous, so careful consideration was
given to how agents search through the GameState and request future GameStates to avoid an
impossible amount of needed computational
power.

My approach to this problem was relatively
straightforward. First, I designed the map
generation. Then I designed the visual
component. Subsequently, I designed the
GameState and how agents interact with it, and
then finally I designed and created each one of
the agents. I ended up creating multiple
unintelligent search agents, such as BFS and
DFS, as well as several more intelligent and
adversarial agents such as an Alpha Beta agent
and a Monte Carlo Tree Search agent. All of
these agents were pitted against one another
and various factors were measured. It was
found that the MCTS agent outperformed the other adversarial agents in a number of factors,
including total wins and quickest victories, with the ExpectiMax and AlphaBeta agents
performing in a reasonable second place. Comparing these agents however is not very
straightforward, and will be described in more detail in the results section.

2. Approach

2.1: GameState and Controller
My approach to implementing non-adversarial and adversarial agents in Warzone begins with the
GameState implementation. The monolithic GameState class consists of the map state, which is a
list of territories that each have a list of neighbors, with the entire map essentially becoming a
large connected graph. In addition, the GameState class provides agents with a way to interact
with the game through two types of moves. The first move, called a Deploy Move, allows agents
to deploy a number of armies to a territory they have already conquered. The GameState is
responsible for verifying the validity of the move, and if valid, will update the number of armies
in that territory. The second type of move called an Attack Move, allows agents to move armies
around the map from one territory to another. While internal troop transfers can be accomplished
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with this move, often these moves involve one agent attacking and gaining new territories. To be
clear, you can only attack neighboring territories and you can only use the armies in the attacking
territory to attack the neighbors. No troop teleportation or airlifts exist. The GameState is
responsible for checking the validity of these moves as well. These two types of moves are often
paired with one another, as you can’t attack a territory if you don’t have any armies to attack
with. Later this will be referred to as a Deploy-Attack-Tuple. Lastly, the GameState offers
another critical feature: the ability to simulate and play out future GameStates. This is
accomplished through a nested inner class that the agents can manipulate that doesn’t affect the
actual GameState. The last logistic thing to mention is the controller, which spawns the agents
and delegates how the rounds progress. Rounds can be visually simulated by clicking the
spacebar or can be played out thousands at a time using the data collection feature.

The primary difficulty from the GameState perspective was two-fold. How can I simulate games
in a computationally efficient manner, and how can I make sure agents are making valid moves
that are being correctly played in the GameState? The first question was answered by allowing
agents to create fake GameStates, which were slimmed-down versions of the original class, with
territories now decoupled as just a list of strings, and various deep-cloned versions of the rest of
the GameState. While this solution functioned, the sheer complexity of the state space was still a
limiting factor (as is described below). In addition, a good portion of the GameState class
infrastructure was dedicated to validating incoming moves and making sure agents only received
valid legal moves to work with. One issue that arose was settling disputes between agents that
had both attempted to attack the same territory during a given round. A randomized selection
policy was used to determine a victor.

2.2: Naive, Testing, and Search Agents
To begin with, a Naive agent was designed that
randomly picks a Deploy-Attack-Tuple legal move each
round. As previously mentioned, this tuple exists so the
agents can attack with troops they just deployed. This
Naive agent works by querying the entire list of legal
moves and arranging a random but valid tuple to attack
with.

The Testing Agent is more complex and was designed to
push the limits of the GameState and make sure
everything was performing as expected. This agent
plays like a human and is hardcoded to target regions in
order to increase its army count quickly, and then go on
the offensive. This agent is unique as it is one of the only agents I gave the ability to
deploy/attack multiple territories per round.
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Finally, I decided to implement several basic search agents. The first was a non-adversarial DFS
agent. This agent would traverse through the graphical representation of the map and would
attack in the order DFS visits each node. The BFS agent I implemented was slightly more
interesting in that it would attack the frontline in a breadth-like manner, much as its algorithm
suggests. Both of these agents were relatively trivial, as this game is inherently meant to be
adversarial.

2.3: Minimax, ExpectiMax, and AlphaBeta Agents
Next, I implemented a series of related adversarial search algorithms. The implementation of the
Minimax agent served as the base for the other two. To start with, the Minimax agent was
implemented to perform a certain depth of Min-max adversarial search each round. This depth
was often capped at d=3, as the GameSate grows exponentially with each round, considering the
recursive depth increases and the number of possible moves also increases as the rounds
progress. Each agent played as its own max agent, with the other agents as the min agents. The
algorithm was implemented in the standard recursive fashion, with each min/max agent getting a
list of legal moves (in the form of the Deploy-Attack-Tuple). The agent would then generate a
subsequent fake GameState which would play the given move, passing it back to the algorithm
while increasing the search depth and iterating the opposing agent. The evaluation function for a
given move was assessed as the number of armies that move added (if a region was conquered)
plus the number of territories gained/lost. This biases the agent to target both regions and
territorial gain. I also tried different scoring metrics such as how other agents were hurt by a
given move.

After a certain search depth is reached, the algorithm terminates and returns the max
Deploy-Attack-Tuple it found. This move is then passed back to the actual GameState where it is
executed on the map.
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The obvious issue that arises here is the state space complexity. At the beginning of a game,
assuming we are limiting the search depth to 3, it is not super costly. Each agent has 1 territory
and is likely only surrounded by 1 to 5 other territories. Because of the way I structured the legal
moves that the agents can query (as the Deploy-Attack tuple), they only have 1 to 5 initial
possibilities. As you iterate through the search, the number of possibilities increases on the order
of O(b^d) where b is the number of nodes and d is the depth. This is already quite costly, but the
true issue exists as you progress through the game. For larger map sizes, as you take more
territory, the number of legal moves you have each round increases greatly. If an agent has a
frontline of 20 or 30 territories, they have hundreds of potential legal moves per round (and that
is for a smaller map). This made it so agents generated tens of thousands of additional
GameState classes each round, greatly slowing down the speed of the game. In order to combat
this, the next logical step was to implement the Alpha-Beta Pruning version of the MiniMax
agent.

Alpha-Beta Pruning performs the min-max adversarial search but restricts the set of possible
solutions (Deploy-Atack-Tuples) in accordance with the part of the search tree that has already
been examined. In more detail, we can call Beta to be the minimum upper bound of possible
solutions, and Alpha to be the maximum lower bound of possible solutions. Before a new node is

added to the search tree, we check if it is worth adding
based on the current upper and lower bounds that exist
already. For example, assuming all agents play
optimally, we can say the min agent will always select
the minimum, so if the new search node for that
specific chunk of the tree produces a result higher than
the minimum, we can conclude that the min agent
won’t pick it and can prune it from the tree. The whole
objective here is to narrow down the search tree size
and prune (meaning remove) nodes that are not
helpful in generating an optimal solution.

Lastly, using the same basic structure, I implemented the ExpectiMax agent. This agent is similar
to the Minimax agent, however, instead of maximizing the highest score, the agent attempts to
maximize the greatest expected utility. This is because unlike with Minimax, we are no longer
assuming adversaries are acting optimally. Instead, we generate chance nodes that take the
average utility of all available nodes below them in the tree, which provides the agents with each
node's expected utility.

3.4: Monte Carlo Tree Search Agent
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Lastly, I implemented a Monte Carlo Tree Search Agent. This agent uses the famous MCTS
algorithm to recurse through a tree of GameStates and find the given move for this round that is
most likely to help the agent win the game. The algorithm itself is quite simple, but its
implementation in my game was not so easy. The algorithm consists of 4 primary steps. 1)
Selection, where the algorithm begins with the root node in the search tree and selects a child
node with a maximum win rate using Upper Confidence Bound (UCB). 2) Expansion, where the
algorithm expands the search tree. 3) Simulation, where the algorithm selects a child node and
randomly simulates a game until a playout state is reached (meaning the game has ended). And
finally, 4) backpropagation, where the algorithm updates its beliefs by traversing upwards to the
root node while updating the number of visits for each node and the node's win rate (the number
of times that node won or lost). Each one of these steps is played in order while time remains, so
as time increases, the algorithm can theoretically generate a better solution.

Now, with background aside, I
implemented MCTS as follows.
Pieces of the implementation are
inspired by a Tic-Tac-Toe
Baeldung piece [3]. Each round,
an agent receives an updating
GameState and performs MCTS
for a given number of iterations,
usually around 200. This
algorithm is usually meant to
function online, meaning it runs
while time remains. However,
there is no true time cap for the
amount of time an agent can take
to make a move in our game, so I
arbitrarily limited the number of
iterations MCTS could perform.
Next, I implemented a Node class
to represent a node in the search
tree, which contains information
about the State, parent, and
children of this node. I
implemented the State class to
contain the simulated GameState,
the move to get to this state, and a
ton of other information such as
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the number of wins, the number of visits, the opponents, etc.

Random playouts were implemented in a similar way to our Naive
agent, and wIe made our version compatible with an arbitrarily large
number of opponents. I also implemented Upper Confidence Bound as
a selection policy. Additional specifics can be found in the citations,
but this policy helps weigh the fundamental question of exploitation vs.
exploration in A.I. [4]. As we visit a node more often in the search tree, the UCB value
decreases. This helps the algorithm avoid constantly re-visiting the same node which prevents it
from further exploring the search tree. Lastly, no heuristic was applied to guide random playouts,
so our playouts could be considered light playouts.

4. Results

To begin the discussion of results, it's best to consider a number of things. Firstly, our game of
Warzone is predisposed to stalemates. Situations in which all agents control the same number of
armies are common and will result in an endless loop of taking the same territory. Because of
this, each game is capped at 100
rounds. The results below all come
from the same map (unrandomized for
these trials).

Firstly, I can discuss victories over 100
games. As should be clear, the Naive
agent performs poorly against all
adversarial search agents. This is
expected as the Naive agent has no
metric or heuristic for assessing the
potential outcome of a move. Also as
expected, in this context all of the Minimax-based adversarial agents perform relatively the same
against the Naive agent and one another. The AlphaBeta agent playing the MiniMax agent
resulted in almost all stalemates. Interestingly, we can see MCTS had a significant lead over the
AlphaBeta agent over 100 games. This is likely the result of MCTS being able to perform more
queries in the search tree given the structure of the algorithm, while AlphaBeta was limited due
to the time complexity it incurs.
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Secondly, it was interesting to see how much of a difference Alpha-Beta pruning made in terms
of expanding the search tree. It can be seen that in each one of the games in figure 9, the
AlphaBeta agent consistently expanded fewer GameStates, resulting in faster performance.

Thirdly, I also sought to test how quickly an agent could be victorious. As can be seen in figure
10, the AlphaBeta agent took the longest number of rounds on average to win a game when
playing against the Naive agent, while MCTS performed the quickest. This is because the MCTS
agent tends to prioritize attacking and defeating other agents, rather than gaining territory. This is

the case because, during playouts, it is more
probable to end the game by attacking an
opponent quickly, rather than slowly building
up armies. As a side note, the MCTS agent
exhibits behavior consistent with an offensive
agent in my implementation.

Finally, I wanted to examine another common

characteristic of Warzone, which is taking
regional bonuses as quickly as possible. As
a reminder, a regional bonus is given in the
form of additional armies per round if an
agent is able to control a whole region. As I
expected, our Testing agent and BFS agents
vastly outperform the others, as they are
able to take multiple territories per round.
However, with all things being equal, we
can see the conclusion from the previous
graph reflected here. The MCTS agent, because it plays more offensively, doesn’t take the
regional bonus very quickly, taking on average 20 rounds. All of the Minimax-based adversarial
agents take around 18 rounds to accomplish this.

5. Future Work

To reiterate the original purpose posed during this project, “to assess whether I could create
intelligent agents to play this game and if they would exhibit any of the human-like strategies I
employ myself,” it can be concluded that I accomplished this purpose. I implemented several
‘intelligent’ adversarial agents that could play against one another, and moreover, some of these
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agents, especially the MCTS agent, exhibited both an offensive human-like strategy, and the
worm-based disruption strategy (knock down an opponent's regional bonus values).
Going forward my goal is to perfect the GameState in a way that will allow for easier expansion
of possible GameStates without retaining all information within the current state. MCTS worked
extremely well in terms of space conservation and I am interested in implementing a similar
algorithm with a re-evaluated set of action values that better represent the impact of each move.
This project was born out of my love for the game of Warzone and my curiosity to see if I could
implement the algorithms learned in class.

As a final note, the project now has the capability for human players to play against the trained
agents.
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